5 research outputs found

    Untangling the GNSS-R coherent and incoherent components: Experimental evidences over the ocean

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Global Navigation Satellite Systems Reflected (GNSS-R) signals exhibit an incoherent and a coherent components [1], [2]. Current models assume that one or the other are dominant, and the calibration, and geophysical parameter retrieval (eg. wind speed, soil moisture ...) are developed accordingly. Even the presence itself of the coherent component of a GNSS reflected signal has been a matter of discussion in the last years. In this work, the method used in [3] to separate the leakage of the direct signal from the reflected one is applied to a set of GNSS signals reflected collected over the ocean by the MIR [4], [5], an airborne dual-band (L1/E1 and L5/E5a), multi-constellation (GPS and Galileo) GNSS-R instrument with two 19-elements array with 4 beam-steered each. The results presented demonstrate the feasibility of the proposed technique to untangle the coherent and incoherent components in GNSS reflected signals. This technique allows the processing of these components separately, which will increase the calibration accuracy (as today both are mixed together), and allows high resolution applications since the spatial resolution of the coherent component is determined by the size of the first Fresnel zone [6] (300-500 meters from a LEO satellite), and not by the size of the glistening zone (~25 km from a LEO satellite).This work was supported by the Spanish Ministry of Science, Innovation and Universities, “Sensing with Pio- neering Opportunistic Techniques”, grant RTI2018-099008- B-C21, and the grant for recruitment of early-stage research staff FI-DGR 2015 and 2018 of the AGAUR - Generalitat de Catalunya (FEDER)Postprint (author's final draft

    Improved gnss-r altimetry methods: Theory and experimental demonstration using airborne dual frequency data from the microwave interferometric reflectometer (mir)

    Get PDF
    Altimetric performance of Global Navigation Satellite System - Reflectometry (GNSS-R) instruments depends on receiver’s bandwidth and signal-to-noise ratio (SNR). The altimetric delay is usually computed from the time difference between the peak of the direct signal waveform and the maximum of the derivative of the reflected signal waveform. Dual-frequency data gathered by the airborne Microwave Interferometric Reflectometer (MIR) in the Bass Strait, between Australia and Tasmania, suggest that this approach is only valid for flat surfaces and large bandwidth receivers. This work analyses different methods to compute the altimetric observables using GNSS-R. A proposed novel methodThis work was funded by the Spanish Ministry of Science, Innovation and Universities, “Sensing with Pioneering Opportunistic Techniques”, grant RTI2018-099008-B-C21/AEI/10.13039/ 501100011033, and the grant for recruitment of early-stage research staff FI-DGR 2015 of the AGAUR— Generalitat de Catalunya (FEDER), Spain, and the grant for recruitment of early-stage research staff FI 2018 of the AGAUR—Generalitat de Catalunya (FEDER), Spain, and Unidad de Excelencia María de Maeztu MDM-2016-060Postprint (published version

    SMOS instrument performance after more than 11 years in orbit

    Get PDF
    ESA's Soil Moisture and Ocean Salinity (SMOS) mission [1] has been in orbit for over 11 years, and its Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) in two dimensions keeps being fully operational. This II-year long lifetime of SMOS, so far, has enabled the calibration and Level-1 processor team to improve the calibration procedures and the image reconstruction resulting in a new version of the Level-1 data processor, v724. To present the main performance features of this new version and the improvement in the calibration procedures constitute the main objective and content of this presentation.Peer ReviewedArticle signat per 32 autors/es: Manuel Martín-Neira(1), Roger Oliva(2) , Raúl Onrubia(2) , Ignasi Corbella(3), Nuria Duffo(3), Roselena Rubino(3), Juha Kainulainen(4), Josep Closa(5), Albert Zurita(5), Javier del Castillo(5), François Cabot(6), Ali Khazaal(6), Eric Anterrieu(6), Jose Barbosa(7), Gonçalo Lopes(8), Daniel Barros(8), Joe Tenerelli(9), Raúl Díez-García(10), Verena Rodríguez(10) , Jorge Fauste(14) , José María Castro Cerón(15) , Antonio Turiel(11), Verónica González-Gambau(11), Raffaele Crapolicchio(12), Lorenzo Di Ciolo(16) , Giovanni Macelloni(13), Marco Brogioni(13), Francesco Montomoli(13), Pierre Vogel(1), Berta Hoyos Ortega(1), Elena Checa Cortés(1), Martin Suess(1) // (1) European Space Agency, ESTEC, Noordwijk, The Netherlands; (2)Zenithal Blue Technologies, Barcelona, Spain; (3) Remote Sensing Laboratory, Universitat Politècnica de Catalunya, Barcelona, Spain; (4) Harp Technologies Ltd., Espoo, Finland; (5) Airbus Defence and Space, Madrid, Spain; (6) CESBIO, Toulouse, France; (7) RDA, Zürich, Switzerland; (8) DEIMOS, Lisbon, Portugal; (9) OceanDataLab, Brest, France; (10) Telespazio UK Ltd, ESAC, Villanueva de la Cañada, Spain; (11) SMOS Barcelona Expert Centre, Barcelona, Spain; (12) European Space Agency, ESRIN, Frascati, Italy; (13) Institute of Applied Physics, Florence, Italy; (14) European Space Agency, ESAC, Villanueva de la Cañada, Spain; (15) ISDEFE, ESAC, Villanueva de la Cañada, Spain; (16) Serco Italia S.p.A., Frascati, Italy.Postprint (author's final draft

    A pre-correlation RFI mitigation algorithm for L-band interferometric radiometers

    Get PDF
    Radio Frequency Interference (RFI) is a major concern for both real and synthetic aperture radiometers. After the lessons learnt from SMOS, ESA is preparing the next generation of L-band interferometric radiometers with RFI mitigation integrated into the cross-correlators. This work presents a preliminary design and results of a pre-correlation RFI mitigation algorithm tailored for interferometric radiometers. The results show that the correlation error introduced by the RFI is reduced on average to the half, with peaks of 20 dB of mitigation.Peer ReviewedPostprint (author's final draft

    RFI detection and mitigation for advanced correlators in interferometric radiometers

    Get PDF
    This work presents the first RFI detection and mitigation algorithm for the interferometric radiometers that will be implemented in its correlator unit. The algorithm operates in the time and frequency domains, applying polarimetric and statistical tests in both domains, and exhibiting a tunable and arbitrary low probability of false alarm. It is scalable to a configurable number of receivers, and it is optimized in terms of quantization bits and the implementation of the cross-correlations in the time or frequency domains for hardware resource saving. New features of this algorithm are the computation of the Stokes parameters per frequency bin in the Short-Time Fourier Transform and a new parameter called Polarimetric Kurtosis. If RFI is detected in one domain or in both, it is removed using the calculated blanking masks. The optimum algorithm parameters are computed, such as length of the FFTs, the threshold selection for a given probability of false alarm, and the selection of the blanking masks. Last, an important result refers to the application of Parseval’s theorem for the computation of the cross-correlations in the frequency domain, instead of in the time domain, which is more efficient and leads to smaller errors even when using moderate quantization levels. The algorithm has been developed in the framework of the ESA’s technology preparation for a potential L-band radiometer mission beyond SMOS. However, it is also applicable to (polarimetric) real aperture radiometers, and its performance would improve if more than one bit is used in the signal quantization.This research was funded by ESA, grant number ITT AO9359, by project SPOT: Sensing with Pioneering Opportunistic Techniques grant RTI2018-099008-B-C21/AEI/10.13039/501100011033, and the grant for recruitment of early stage research staff of the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) Generalitat de Catalunya, Spain (FISDUR2020/105).Peer ReviewedPostprint (published version
    corecore